가능한 Spanning Tree 중에서, 간선의 가중치 합이 최소인 Spanning Tree를 지칭한다.
mygraph = {
'vertices': ['A', 'B', 'C', 'D', 'E', 'F', 'G'],
'edges': [
(7, 'A', 'B'),
(5, 'A', 'D'),
(7, 'B', 'A'),
(8, 'B', 'C'),
(9, 'B', 'D'),
(7, 'B', 'E'),
(8, 'C', 'B'),
(5, 'C', 'E'),
(5, 'D', 'A'),
(9, 'D', 'B'),
(7, 'D', 'E'),
(6, 'D', 'F'),
(7, 'E', 'B'),
(5, 'E', 'C'),
(7, 'E', 'D'),
(8, 'E', 'F'),
(9, 'E', 'G'),
(6, 'F', 'D'),
(8, 'F', 'E'),
(11, 'F', 'G'),
(9, 'G', 'E'),
(11, 'G', 'F')
]
}
parent = dict()
rank = dict()
def find(node):
# path compression 기법
if parent[node] != node:
parent[node] = find(parent[node])
return parent[node]
def union(node_v, node_u):
root1 = find(node_v)
root2 = find(node_u)
# union-by-rank 기법
if rank[root1] > rank[root2]:
parent[root2] = root1
else:
parent[root1] = root2
if rank[root1] == rank[root2]:
rank[root2] += 1
def make_set(node):
parent[node] = node
rank[node] = 0
def kruskal(graph):
mst = list()
# 1. 초기화
for node in graph['vertices']:
make_set(node)
# 2. 간선 weight 기반 sorting
edges = graph['edges']
edges.sort()
# 3. 간선 연결 (사이클 없는)
for edge in edges:
weight, node_v, node_u = edge
if find(node_v) != find(node_u):
union(node_v, node_u)
mst.append(edge)
return mst
print(kruskal(mygraph))
from collections import defaultdict
from heapq import *
myedges = [
(7, 'A', 'B'), (5, 'A', 'D'),
(8, 'B', 'C'), (9, 'B', 'D'), (7, 'B', 'E'),
(5, 'C', 'E'),
(7, 'D', 'E'), (6, 'D', 'F'),
(8, 'E', 'F'), (9, 'E', 'G'),
(11, 'F', 'G')
]
def prim(start_node, edges):
mst = list()
adjacent_edges = defaultdict(list)
for weight, n1, n2 in edges:
adjacent_edges[n1].append((weight, n1, n2))
adjacent_edges[n2].append((weight, n2, n1))
<!-- 위 for문 실행 후 adjacent_edges 값 :
{'A': [(7, 'A', 'B'), (5, 'A', 'D')],
'B': [(7, 'B', 'A'), (8, 'B', 'C'), (9, 'B', 'D'), (7, 'B', 'E')],
'D': [(5, 'D', 'A'), (9, 'D', 'B'), (7, 'D', 'E'), (6, 'D', 'F')],
'C': [(8, 'C', 'B'), (5, 'C', 'E')],
'E': [(7, 'E', 'B'), (5, 'E', 'C'), (7, 'E', 'D'), (8, 'E', 'F'), (9, 'E', 'G')],
'F': [(6, 'F', 'D'), (8, 'F', 'E'), (11, 'F', 'G')],
'G': [(9, 'G', 'E'), (11, 'G', 'F')]} -->
connected_nodes = set(start_node)
candidate_edge_list = adjacent_edges[start_node]
heapify(candidate_edge_list)
while candidate_edge_list:
weight, n1, n2 = heappop(candidate_edge_list)
if n2 not in connected_nodes:
connected_nodes.add(n2)
mst.append((weight, n1, n2))
for edge in adjacent_edges[n2]:
if edge[2] not in connected_nodes:
heappush(candidate_edge_list, edge)
return mst
print(prim ('A', myedges))