백트래킹 이론
백트래킹(backtracking)
백트래킹 : 제약 조건 만족 문제에서 해를 찾기 위한 전략
해를 찾기 위해, 후보군에 제약 조건을 점진적으로 체크하다가, 해당 후보군이 제약 조건을 만족할 수 없다고 판단되는 즉시 backtrack (다시는 이 후보군을 체크하지 않을 것을 표기)하고, 바로 다른 후보군으로 넘어가며, 결국 최적의 해를 찾는 방법
실제 구현시, 고려할 수 있는 모든 경우의 수 (후보군)를 상태공간트리(State Space Tree)를 통해 표현
상태 공간 트리를 탐색하면서, 제약이 맞지 않으면 해의 후보가 될만한 곳으로 바로 넘어가서 탐색
Promising: 해당 루트가 조건에 맞는지를 검사하는 기법
Pruning (가지치기): 조건에 맞지 않으면 포기하고 다른 루트로 바로 돌아서서, 탐색의 시간을 절약하는 기법
상태 공간 트리
N-queen 문제
NxN 크기의 체스판에 N개의 퀸을 서로 공격할 수 없도록 배치하는 문제
N-queen 해결
N-queen 문제 해결 코드 : 백준 9663번
n=int(input())
def is_available(candidate, current_col):
current_row = len(candidate)
for queen_row in range(current_row):
if candidate[queen_row] == current_col or abs(candidate[queen_row] - current_col) == current_row - queen_row:
return False
return True
def DFS(N, current_row, current_candidate, final_result):
if current_row == N:
final_result.append(current_candidate[:])
return
for candidate_col in range(N):
if is_available(current_candidate, candidate_col):
current_candidate.append(candidate_col)
DFS(N, current_row + 1, current_candidate, final_result)
current_candidate.pop()
def solve_n_queens(N):
final_result = []
DFS(N, 0, [], final_result)
return final_result
print(len(solve_n_queens(n)))
Last updated